

2K UNI/O[®] Serial EEPROM with EUI-48TM Node Identity

DEVICE SELECTION TABLE

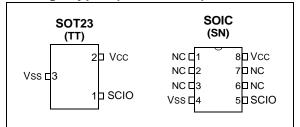
Part Number	Density (bits)	Organization	Vcc Range	Page Size (Bytes)	Temp. Ranges	Packages
11AA02E48	2K	256 x 8	1.8-5.5V	16	I	SN, TT

Features:

- Pre-programmed Globally Unique, 48-bit Node Address
- Compatible with EUI-48[™] and EUI-64[™]
- Single I/O, UNI/O[®] Serial Interface Bus
- Low-Power CMOS Technology
- 1 mA active current, typical
- 1 µA standby current (max.)
- 256 x 8 Bit Organization
- Schmitt Trigger Inputs for Noise Suppression
- Output Slope Control to Eliminate Ground Bounce
- 100 kbps Max. Bit Rate Equivalent to 100 kHz Clock Frequency
- Self-Timed Write Cycle (including Auto-Erase)
- · Page-Write Buffer for up to 16 Bytes
- STATUS Register for Added Control:
 - Write enable latch bit
 - Write-In-Progress bit
- Block Write Protection
 - Protect none, 1/4, 1/2 or all of array
- Built-in Write Protection
 - Power-on/off data protection circuitry
- Write enable latch
- High Reliability
 - Endurance: 1,000,000 erase/write cycles
 - Data retention: > 200 years
 - ESD protection: > 4,000V
- 3-lead SOT-23 and 8-lead SOIC Packages
- Pb-Free and RoHS Compliant
- Available Temperature Ranges:
- Industrial (I): -40°C to +85°C

Pin Function Table

Name	Function
SCIO	Serial Clock, Data Input/Output
Vss	Ground
Vcc	Supply Voltage


Description:

The Microchip Technology Inc. 11AA02E48 device is a 2 Kbit Serial Electrically Erasable PROM. The device is organized in blocks of x8-bit memory and support the patented* single I/O UNI/O[®] serial bus. By using Manchester encoding techniques, the clock and data are combined into a single, serial bit stream (SCIO), where the clock signal is extracted by the receiver to correctly decode the timing and value of each bit.

Low-voltage design permits operation down to 1.8V, with standby and active currents of only 1 uA and 1 mA, respectively.

The 11AA02E48 is available in standard 8-lead SOIC and 3-lead SOT-23 packages.

Package Types (not to scale)

Note: This document is supplemented by the "11AAXXX/11LCXXX Family Data Sheet" (DS22067). See Section 2.0 "Functional Description".

* Microchip's UNI/O[®] Bus products are covered by the following patent issued in the U.S.A.: 7,376,020.

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Vcc	6.5V
SCIO w.r.t. Vss	-0.6V to Vcc+1.0V
Storage temperature	
Ambient temperature under bias	40°C to 85°C
ESD protection on all pins	

† NOTICE: Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an extended period of time may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

			Electrical C	Characteristi	ics:			
DC CHA	DC CHARACTERISTICS		Industrial (I): $VCC = 2.5V$ to $5.5V$ TA = $-40^{\circ}C$ to $+85^{\circ}C$					
			Vcc	= 1.8V to	D 2.5V TA = -20°C to +85°C			
Param. No.	Sym Characteristic		Min.	Max.	Units	Test Conditions		
D1	Vih	High-level Input Voltage	0.7*Vcc	Vcc+1	V			
D2	VIL	Low-level Input	-0.3	0.3*Vcc	V	$VCC \ge 2.5V$		
		Voltage	-0.3	0.2*Vcc	V	Vcc < 2.5V		
D3	VHYS	Hysteresis of Schmitt Trigger inputs (SCIO)	0.05*Vcc	_	V	Vcc ≥ 2.5V (Note 1)		
D4	Voh	High-level Output	Vcc -0.5	—	V	ІОН = -300 μA, VCC = 5.5V		
		Voltage	Vcc -0.5	—	V	IOH = -200 μA, Vcc = 2.5V		
D5	Vol	Low-level Output	—	0.4	V	IOI = 300 μA, VCC = 5.5V		
		Voltage	_	0.4	V	IOI = 200 μA, Vcc = 2.5V		
D6	lo	Output Current Limit	—	±4	mA	Vcc = 5.5V (Note 1)		
		(Note 2)		±3	mA	Vcc = 2.5V (Note 1)		
D7	ILI	Input Leakage Current (SCIO)		±1	μA	VIN = VSS or VCC		
D8	CINT	Internal Capacitance (all inputs and outputs)	_	7	pF	TA = 25°C, FCLK = 1 MHz, VCC = 5.0V (Note 1)		
D9	Icc Read	Read Operating	_	3	mA	Vcc=5.5V, FBUS=100 kHz, CB=100 pF		
		Current	—	1	mA	Vcc=2.5V, FBUS=100 kHz, CB=100 pF		
D10	ICC Write	Write Operating	_	5	mA	Vcc = 5.5V		
		Current		3	mA	VCC = 2.5V		
D11	lccs	Standby Current		1	μA	VCC = 5.5V, TA = 85°C		
D12	Icci	Idle Mode Current		50	μA	Vcc = 5.5V		

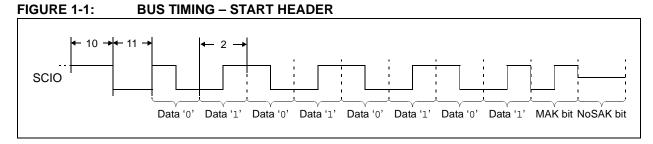
Note 1: This parameter is periodically sampled and not 100% tested.

2: The SCIO output driver impedance will vary to ensure IO is not exceeded.

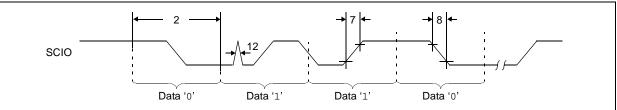
			Electrical (T (000 (0700									
AC CHA	AC CHARACTERISTICS				C = 2.5V to 5										
				Vo	CC = 1.8V to 2										
Param. No.	Sym.	Sym. Characteristic		Sym. Characteristic		Sym. Characteristic		Sym. Characteristic		Sym. Characteristic Min. I		Max.	Units	Test Conditions	
1	FBUS	Serial Bus Frequency	10	100	kHz	—									
2	TE	Bit Period	10	100	μs	—									
3	Tijit	Input Edge Jitter Tolerance	—	±0.08	UI	(Note 3)									
4	FDRIFT	Serial Bus Frequency Drift Rate Tolerance	—	±0.75	% per byte	_									
5	FDEV	Serial Bus Frequency	—	±5	% per	—									
		Drift Limit			command										
6	Тојіт	Output Edge Jitter	—	±0.25	UI	(Note 3)									
7	TR	SCIO Input Rise Time (Note 1)	—	100	ns	_									
8	TF	SCIO Input Fall Time (Note 1)	—	100	ns	_									
9	TSTBY	Standby Pulse Time	600	—	μs	—									
10	Tss	Start Header Setup Time	10	—	μs	—									
11	THDR	Start Header Low Pulse Time	5	—	μs	_									
12	TSP	Input Filter Spike Suppression (SCIO)	—	50	ns	(Note 1)									
13	Twc	Write Cycle Time		5	ms	Write, WRSR commands									
		(byte or page)	—	10	ms	ERAL, SETAL commands									
14		Endurance (per page)	1M	_	cycles	25°C, Vcc = 5.5V (Note 2)									

TABLE 1-2: AC CHARACTERISTICS

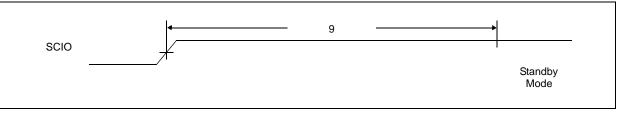
Note 1: This parameter is periodically sampled and not 100% tested.


2: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance[™] Model which can be obtained on Microchip's web site: www.microchip.com.

3: A Unit Interval (UI) is equal to 1-bit period (TE) at the current bus frequency.


TABLE 1-3: AC TEST CONDITIONS

AC Waveform:					
VLO = 0.2V					
VHI = VCC - 0.2V					
CL = 100 pF					
Timing Measurement Reference Level					
Input	0.5 Vcc				
Output	0.5 Vcc				


11AA02E48

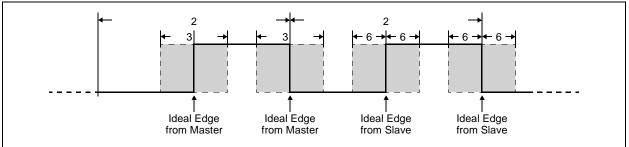
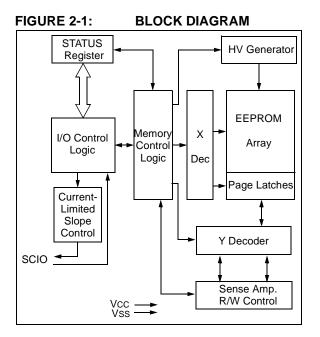

FIGURE 1-2: BUS TIMING – DATA

FIGURE 1-3: BUS TIMING – STANDBY PULSE

FIGURE 1-4: BUS TIMING – JITTER

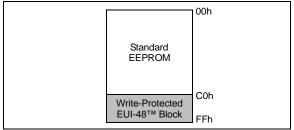

2.0 FUNCTIONAL DESCRIPTION

2.1 **Principles of Operation**

The 11AA02E48 family of serial EEPROMs support the UNI/O[®] protocol. They can be interfaced with microcontrollers, including Microchip's PIC[®] microcontrollers, ASICs, or any other device with an available discrete I/O line that can be configured properly to match the UNI/O protocol.

The 11AA02E48 devices contain an 8-bit instruction register. The devices are accessed via the SCIO pin.

Data is embedded into the I/O stream through Manchester encoding. The bus is controlled by a master device which determines the clock period, controls the bus access and initiates all operations, while the 11AA02E48 works as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is active.

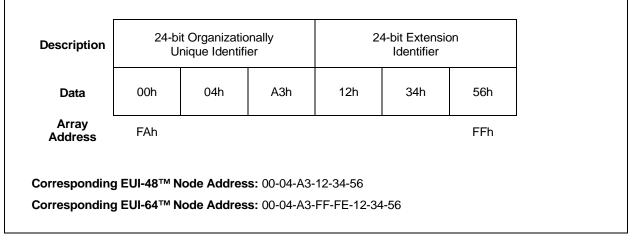


Note: This data sheet documents only the device's features and specifications that are in addition to the features and specifications of the 11AA020 device. For information on the features and specifications shared by the 11AA02E48 and 11AA020 devices, see the *"11AAXXX/11LCXXX Family Data Sheet*" (DS22067).

3.0 PRE-PROGRAMMED EUI-48[™] NODE ADDRESS

The 11AA02E48 is programmed at the factory with a globally unique, EUI-48TM and EUI-64TM compatible node address stored in the upper 1/4 of the array and write-protected through the STATUS register. The remaining 1,536 bits are available for application use.

FIGURE 3-1:	MEMORY ORGANIZATION
-------------	---------------------



The 6-byte EUI-48[™] node address value is stored in array locations 0xFA through 0xFF, as shown in Figure 3-2. The first 3 bytes are the Organizationally Unique Identifier (OUI) assigned to Microchip by the IEEE Registration Authority. The remaining 3 bytes are the Extension Identifier, and are generated by Microchip to ensure a globally-unique, 48-bit value.

3.1 EUI-64[™] Support

The pre-programmed EUI-48 node address can easily be encapsulated at the application level to form a globally unique, 64-bit node address for systems utilizing the EUI-64 standard. This is done by adding 0xFFFE between the OUI and the Extension Identifier, as shown below.

FIGURE 3-2: EUI-48 NODE ADDRESS PHYSICAL MEMORY MAP EXAMPLE

3.2 Factory-Programmed Write Protection

In order to help guard against accidental corruption of the EUI-48 node address, the BP1 and BP0 bits of the STATUS register are programmed at the factory to '0' and '1', respectively, as shown in the following table:

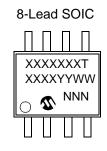
7	6	5	4	3	2	1	0
Х	Х	Х	Х	BP1	BP0	WEL	WIP
				0	1		

This protects the upper 1/4 of the array (0xC0 to 0xFF) from write operations. This array block can be utilized for writing by clearing the BP bits with a Write Status Register (WRSR) instruction. Note that if this is performed, care must be taken to prevent overwriting the EUI-48 value.

4.0 PIN DESCRIPTIONS

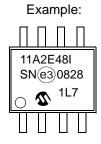
The descriptions of the pins are listed in Table 4-1.

Name	3-pin SOT-23	8-pin SOIC	Description
SCIO	1	5	Serial Clock, Data Input/Output
Vcc	2	8	Supply Voltage
Vss	3	4	Ground
NC	_	1,2,3,6,7	No Internal Connection


TABLE 4-1: PIN FUNCTION TABLE

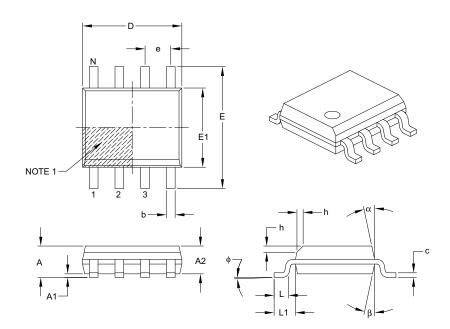
4.1 Serial Clock, Data Input/Output (SCIO)


SCIO is a bidirectional pin used to transfer commands and addresses into, as well as data into and out of, the device. The serial clock is embedded into the data stream through Manchester encoding. Each bit is represented by a signal transition at the middle of the bit period.


5.0 PACKAGING INFORMATION

5.1 Package Marking Information

3-Lead SOT-23


Example:

	1st Line Marking Code
Part Number	SOT-23
	I Temp.
11AA02E48	E2NN

Note: NN = Alphanumeric traceability code

Legend	d: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

For the most current package drawings, please see the Microchip Packaging Specification located at

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

http://www.microchip.com/packaging

	Units		MILLIMETERS	3
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	e		1.27 BSC	
Overall Height	A	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D	4.90 BSC		
Chamfer (optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.17	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

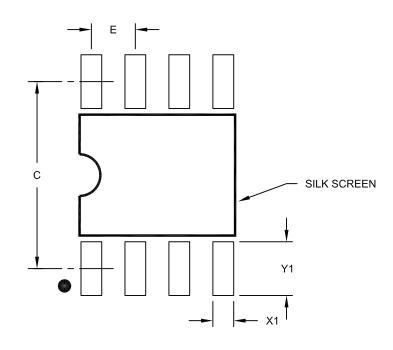
Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

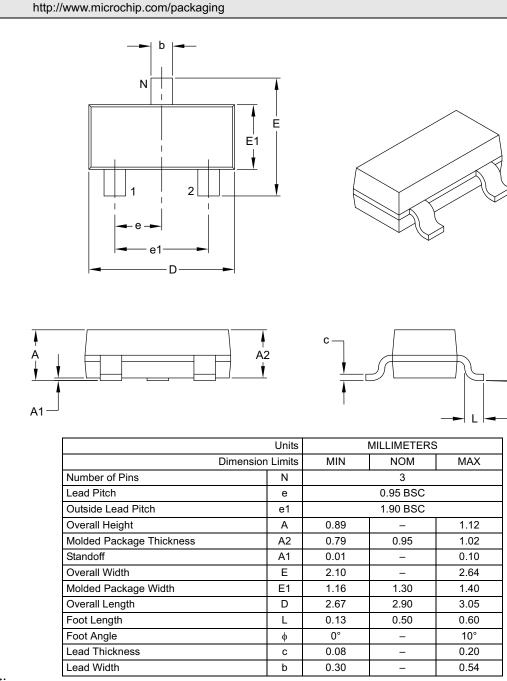
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN


Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

For the most current package drawings, please see the Microchip Packaging Specification located at

3-Lead Plastic Small Outline Transistor (TT) [SOT-23]

Notes:

Note:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-104B

© 2008 Microchip Technology Inc.

APPENDIX A: REVISION HISTORY

Revision A (12/08)

Original release of this document.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent				
RE:	Reader Response					
From	n: Name					
	Company					
		FAX: ()				
• •	ication (optional):					
Wou	Id you like a reply? Y N					
Devi	ce: 11AA02E48	Literature Number: DS22122A				
Ques	stions:					
1. \	1. What are the best features of this document?					
_						
_						
2. H	How does this document meet your l	hardware and software development needs?				
-						
_						
3. E	Do you find the organization of this d	locument easy to follow? If not, why?				
-						
-						
4. \	What additions to the document do y	you think would enhance the structure and subject?				
-						
-						
5. \	What deletions from the document c	ould be made without affecting the overall usefulness?				
-						
-						
6. I	s there any incorrect or misleading i	nformation (what and where)?				
-						
- 7 '	How would you improve this docume	net?				
7. ł	Tow would you improve this docume	2011 (2011 (
-						
-						

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X — X /XX Examples:
Device	Tape & Reel Temperature Package a) 11AA02E48T-I/TT = 2 Kbit, 1.8V Serial Range EEPROM, Industrial temp., Tape & Reel, SOT-23 package
Device:	11AA02E48 = 2 Kbit, 1.8V UNI/O Serial EEPROM with EUI-48™ Node Identity b) 11AA02E48-I/SN = 2 Kbit, 1.8V Serial EEPROM, Industrial temp., SOIC package c) 11AA02E48TI/SN = 2 Kbit, 1.8V Serial EEPROM, Industrial temp., SOIC package c) 11AA02E48TI/SN = 2 Kbit, 1.8V Serial EEPROM, Industrial temp., Tape & Reel, SOIC package
Tape & Reel:	T = Tape and Reel Blank = Tube
Temperature Range:	I = -40° C to+85°C(Industrial)
Package:	SN = 8-lead Plastic SOIC (3.90 mm body) TT = 3-lead SOT 23 (Tape and Reel only)

11AA02E48

NOTES:

Note the following details of the code protection feature on Microchip devices:

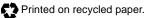
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820